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PREFACE

This report presents a new analytic approach to optical pulse

propagation through a multiple scattering medium. Such a model is

. needed to resolve propagation issues in the Blue-Green Optical Com-
munication Program. The analytic model is capable of (1) duplicating
highly aggregated Monte Carlo computations at significantly lower
cost, and (2) providing detailed computations (e.g., involving finite-
dimension receivers) that are impractical to simulate.
The effort was jointly funded by the Defense Advanced Research
Projects Agency, the Office of Naval Research, and the Naval Electronics
‘ System Command. The technical advisor was the Naval Ocean Systems
Center. The report should be immediately useful for verifying or up-

dating modular expressions in the current Navy model for single-pulse
. downlink propagation.
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ABSTRACT

Y
This report develops an analytic model for the propagation of
an optical pulse through a multiple scattering medium. Such a model
is needed to investigate the effect of clouds on optical communica-

tions from a satellite to a submarine. A key initial result is the

derivation of simple expressions for the first two spatial and angular

moments of the radiance distribution for a narrow delta-function source

immersed in an infinite scattering medium. The moments support a

% diffusion approximation for the transport process in an infinite

- plane-parallel cloud. First the radiance is calculated at the cloud
i exit and on a plane an arbitrary distance below the cloud, then power
; ! collected by a finite receiver located on this plane is computed.

The model is validated by comparing its results with computer simu-

lation curve fits for optically thick clouds (i.e.,(£/> 15). The

o

model is capable of duplicating nearly all the simulation results but

A
2 {VK’.
~

at significantly lower cost. Furthermore, detailed calculations im-

O T,

2 practical to simulate are readily computed.
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I. INTRODUCTION AND SUMMARY

This report develops an analytic model for the propagation of an
optical pulse through a multiple scattering medium. Such a model is
needed to investigate the effect of clouds on satellite~to-submarine
communications by means of a blue-green laser. Figure 1 shows the
portion of the propagation path considered here as well as the key
physical and system parameters of the environment and the receiver.

We consider both a narrow collimated and a broad Gaussian beam
as a source function at the cloud entrance. In both cases, however,
the source is assumed to be a delta function in time. The narrow beam
response provides both a Green's function for the broad beam input and
a tool for comparing our results with Monte Carlo simulations. The
cloud is assumed to be a plane-parallel slab of infinite horizomtal
extent. Cloud parameters are physical thickness ZO, optical thick-
ness T, scattering coefficient ks, single-scatter albedo A, average

cosine of the polar scattering angle g = {cos 6), and (cos2 8). We

provide analytic expressions for the radiance at the cloud exit (i.e.,
at z =T = kszo) and the power received by an infinite plane receiver.

The latter expression corresponds to the problem addressed by computer

simulation experiments.

<
Y
t
2
.
AT

Figure 1 shows that the radiance emerging from the cloud is propa-

Lan®
. -

gated through the atmosphere to a plane just above the ocean surface

of

(i.e., z = T + d). The atmospheric layer below the cloud is character-

A Y

ized by its physical thickness Z., and absorption coefficient ka; the nor-

1
malized distance d in Fig. 1 is given by d = kSZl.

power into an on-axis receiver (at z = T + d) with aperture a and polar

e

We calculate the

R

field~of-view half-angle efov' In an actual communication link, the

IRaREES

2

receiver would, of course, be located on a submarine some distance

2

X

Ww( »

4
-

below the ocean surface. However, we calculate the received pulse
above the ocean surface to develop modular expressions for transmission

and pulse spreading due to clouds and atmosphere alone, and to enable

4

experimental verification of our results with data gathered by ground-

ot

B

based receivers [1] or scaled laboratory experiments.
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The most complete mathematical description of the multiple scatter-
ing problem is given by the nonstationary radiative transport equation
of Chandrasekhar [2]. Written in dimensionless variables, the transport

equati?n for the radiance I(x, o; &) takes the form

dI(x, a; &)

—r—t eyt I T | TG s Dt @) duy,
4
+ Sy(%, a5 &) , 1)

where § = kect——t signifying time and ke the extinction coefficient;

X = ke§ is the normalized cartesian spatial coordisate; o = (8, ¢)

denotes an ordered pair of angular direction; and &y is the unit
vector, and dwa the solid-angle element, in direction o. 1In addition,
p(a'; a) is the scalar phase function, S0 is the source function, and
A is the single-scatter albedo.

Unfortunately, the nonstationary transport equation has not been
solved in a form suitable for computation. Hence two procedures have
been widely used to obtain quantitative results--solving =, (1) under
the small-angle assumption [3], and simulating the scattering process
by computerized Monte Carlo methods [4].

Although the scalar phase function is indeed highly peaked in the
forward direction for aerosols whose mean radius is much larger than
the optical wavelength, the small-angle assumption may be invalid for
clouds thickexr than several mean free paths. In principle, Monte
Carlo simulations can provide the required numerical results for
studies of optical communication systems. In practice, however, the
cost of simulations usually limits calculations to highlv aggregated
quantities (e.g., optical pulses collected over infinite receiving
planes [4]). More important, Monte Carlo curve fits usually do not
illuminate the underlying physical phenomena of interest.

To overcome such difficulties, we begin by deriving the first
two spatial and angular moments of the radiance function for a narrow,
collimated, delta-function source immersed in an infinite medium (Sec.

IT). The moments are expressed as simple closed-form algebraic formulae
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et 3, e
SEEgsey:

- - B T e - -




R A R e A T R LR 0 . e A B e o o v e o s e
R f&hm*».;t't w,.ims;,ﬂs:‘i:up(» :m :{gh fpy,,mg?,y;@@ﬁéwi,?&:?.?gi;';ﬁ%f ~~f~r§wa¢§3‘§ﬁ s et “;:?r-‘ T

derived with no approximations (e.g., small-angle assumption, restricted
scalar phase function) and span the regimes from forward scatter (opti-
cally thin media) to diffusion (optically thick media). Their asymp-
totic limits are shown to correspond to the usual thin and thick clcud
approximations (Sec. III).

In addition to clarifying the scattering process, the moments also
provide the nonstationary drift and diffusion coefficients for the dif-
fusion equation approximation to the transport equation (1). The full
radiance distribution at the cloud exit (for T > 15) is derived from
the energy densit& solution te the diffusion equation for finite cloud
boundary conditions coupled with the published angular distribution
for a diffusing particle emerging from a scattering medium (Sec. IV).
The Green's function atmospheric propagator then allows power pulse
calculations for a finite receiver placed an arbitrary distance below
the cloud (Sec. V). Finally, the effect on the blue-green laser com-
munication program is discussed (Sec. VI).

We validate the diffusion approximation to the transport process
by comparing our calculations with published simulation curve fits

for the functional form of received power versus time, total trans-

mission versus the optical thickness of the cloud, spatial and angular
spreading versus optical thickness, and multipath time delay versus
optical thickness. In each case, the two methods show excellent agree-
ment: tée calculated curve generally overlaps iche simulation fit for
T= 15.
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II. MOMENTS OF RADIANCE DISTRIBUTION

Consider a photon immersed in an infinite, nonabsorbing, scatter-
ing medium with collision geometry shown in Fig. 2. Path lengths between
.3 scatterings 2n are independent, identically distributed (i.i.d.) random
variables. The 2n are distributed exponentially witl . parameter of
unity corresponding to randomly (i.e., Poisson) distributed aerosols
and normalization of x = (x, vy, z)T to the mean scattering distance
¥ k;l. Polar and rotational deflection angles—-en and ¢n’ respectively--
are 1.i.d. and distributed according to the scalar phase function,
which is assumed to be such that en and ¢n are independent and (by
sy metry) ¢n is uniformly distributed on (0, 2m).
X The density function f(x, o; &) is defined so that £ de dwa gives
the probability that a photon initially heading in the z direction at
x = 0 will, at time § = ksct, be found in the volume element de = Vs
dx dy dz while heading within the solid-angle element dwa oriented in
2 direction o = (9, ¢). The radiance I(x, o; &) in dimensionless vari-

ables resulting from an initial, arbitrarily thin pulse in space and

time is then given by I(x, o; §) = Eof(z, a; &), where E, is the energy

in the initial pulse. °
3 Without explicit knowledge of f(x, ®; &), this section derives
expressions for the following moments of the scattering process, all
conditioned on a photon initially at x = 0 and directed along the

z-axis in an Infinite nonabsorbing medium.

e The mean penetration into the medium at time &:
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? e The variance along the axis of propagation:
(&) = [z - 2(E) 1% av_ duw_ .
Z X o
\ Y]
¥ X
e The transverse variance:
-~
X 2 2 _ 2
0. (&) = Uy(E) ~/ / x“f dVE dw, -
V. "Q
X
e The average cosine of the polar heading at time &:
g
{cos B(E)) =/ fcos e f dVE dwa .
V. "8
pS
v 3
g e The mean of cos2 8(E):
;
2
%é} (cos? 8(E)) = f /cosz 0 fav_do
o v e -
‘: “’: g -
fi: é where the solid-angle integrals are over { = 4T steradians
;UE S and x(£) = y(£) = 0 by symmetry.

The following derivations are included for mathematical completeness,

G

s."

.. .

R «
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G !

and may be omitted by those most interested in the physical significance

AL
w

(A L

of the moments described in Sec. III.

The derivations proceed in two parts. First, the (conditional)

v

*»1
iy

5
B
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Tt
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moments of fn(g, a3 E)--i.e., the volume-angle density restricted to

¥

Y
t3

photons that have scattered exactly n times--are found; then the un-

conditional moments are computed directly as, for example,
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z(E) -Z Pia(®) = n} z (&) ,
n=0

where the probability of n scatterings at time £ > 0 is given by

n
Pln(g) = n} = L , nx 0 . (2)

nt

CONDITIONAL MEAN in(E)

At time § the random position vector of a photon initially at

X = 0 traveling in z direction and scattered n times is

X (£)

n
AGIEFNCED PENCER (3
z_(E) pr

where

L 0
TIn().

k=0

Rm is the random distance traveled by the photon between the m and
m + 1 scattering, and Bk is & matrix giving the change in heading after

th
the k= scattering event. Therefore,

and
cos ¢k cos ek ~sin ¢k cos ¢k sin ek
Bk = { sin ¢k cos ek cos ¢k sin ¢k sin ek .
-sin ek 0 cos Bk
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The independence of the Gk and ¢k imply the independence of the Bk’
although 2m is not independent of ﬁm' for all m, m' £ n, when con-
ditioned on a total of n scatterings.

Taking the expectation of Eq. (3), we have

n
@ =) LT (3"
m=0

To evaluate Em’ we must digress into order statistics. Given that

the photon has been scattered n times at time £, let Tl’ TZ’ ceny Tn

be the ordered random scattering times. Since unordered scattering

times are i.i.d. and uniform on [0, £], the ordered random scattering
times have the joint probability density [5]

n!
£ s e = — 0< < < ..., < < g
1y Tgrenerty 1 B2 e B T T £, < &y <8y
=0, otherwise .

The scattering lengths are related to the order statistics by the

formula
B =Ty =T s k=0, 1, e, m. ()
Thus,
g gn gk+2 €k+1
T = -Ilg- )
e %€, _/ s f Err [ By B
“0 0 0 0
&k &3 52
K
" f -1 * f %, / % )= 2%1
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o _ [0\ __ /o
v =B B, B, **+ B 0j=8B 0
m 071 72 m 1 i
where
_ 0 0 0
8 = 0 0 0 .
-(sin 8) 0 {cos 6)
Thus,
0
v = 0
T m
{cos B)"

Letting v =1 - g

%, (E) = 3 (6) 0
and
_ £ -1 - v)n-i-l
zn(E) T n+1 v ‘

CONDITIONAL SECOND MOMENT (§n(5) 1:?1(6))

‘Multiplying the random position vector in Eq.
pose gives
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and
4 = <‘l’ T ) =T - T = —5-— .
m m+l m+l m n+1

(6)

(8

(3) by its trans-

HAM

=1 - {cos 8), with the help of Eq. (3') we finally obtain
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B
x (5) x2(5) = E 2 (B v E 2 (5 ¥,
m=0 k=0
? n n
=Z E 2 (6) LB v v, .
m=0 k=0

Taking expectations and using the independence of the R,m and ¥ ylelds

n n
RGEHCIED S PRI
m=0

. k=0
n m-1
=Z(2)&_m )+ZZE(2 IO )
=0 m=1 k=0
.(‘?!’
From Eq. (5) we have

: 2 2

E 'Q'm (Tm+1 Tm)

%

and
e T Uy ~ T Ty — ™) -

) %
. Now,
o F £ En bre2 Eiett
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and
g tn Sis2 )
= -r-l—!— vee
oy o = . f €y / €ha _/ Epn / &y &
0 0 0 0
B Ei+2 a1
x _[ g o f 54 %5 %
0 0 0
3 £, £, ,
LR N ] = j(k + 1\€
"f 45y f ang ) "G+ D+ D
0 0 0
for k > j ,
so that
(t, 7,) = G+ DE” for k
i T D+’ or k=3 .
Thus,
2y = (¢ )2 = (2 2 2g2
W =y = T2 = (y? - Ky T2 + ) = T ST D

(T ~ ) (Mg = )

kS
B
5o
~
L]

= T Tan? T ST T T (T Tag? + (T 0

£2
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¥ Substituting the above results into Eq. (9) and separating the
zeroth term in the first summatioﬁ, we obtain
n
2 000
% T - 28 z : T
<§ﬂ(g) l5:1(8')) (n+ 1+ 2) (0 0 0>+ <!1n y‘m)
001
m=1
n mwl
. T
7. + E E (gm Xk) . (10)
m=1l k=0
From Eqs. (4) and (6), we have
T 0 T
(-Ym —Yk> = (Bl cese Bk Bk+1 Bk+2 cee Bm 2 Y-k)
i 0 T ‘
3‘ = <Bl se s Bk(Bk+l Bk+2 oo Bm) g Xk)
%%; « [O\ T
. —-
i = {B, B, B g) v
B 0
R _ ves . m-k T
is = {8, B, {cos 6) (({) v,
g _ m-k T
% = {cos ©) (Xk Xk)
| ]
- _ mk T (11
= =8 <!k xk> : ‘
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Substituting Eq. (11) into Eq. (10) and separating terms with k = 0
in the double sum of Eq. (10), we obtain

2 0
T - p13
(8 x (&) = m+ D +2) <8

n-1 n-k
T m
+ E v, v E g
k=1 m=1
n
S| S Py AR R S
m+1)m+2) 1-¢ —m —m
; 001 -
= m=
3 - n-1 n-1
E n+l
R g Ty 8 -k T
R Y e i g 2u% eyl
) =1 k=1

_ s (12)
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: The evaluation of (_Yk li) proceeds by taking expectations from
the center outward:
000
T T T T T
G v = By By oot By By <g 0 g) By By *** By By
000
= o0 T T * 00 T T
= By By += By By <g 0 (1’> B Bq? tet By By)
%-(sinz o) 0 0
1 2 T Ty ,T
= B, (B, *+* (B, ; 0 5{sin” 0 o2 By ;7 B,) By)
0 {cos” 9)
1~ Z;k 0
- 3 1-% o0 , (13)
o 1+2c%
i
i
At where
‘ _ 3(cos2 8) -1
&= 2 .
L-?.i',‘ Since
| RS
¥ n
- n
g 2 : m_t(1-%)
; ¢ 4 1 - T >
L m=1
) Eq. (12) becomes
g%
E:
T i g dB
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. m+Dn+2)) 1-¢g 001 3 001

3 n /-1 00 100

g +§5%—'_—%l<o-10 +22L_E (010

3 0 02 B\oo1

; n-1, /-1 00 n-1, /100

- 1_g -t ) - 1l g g -g ")
+ 0-10 010
3l-g 1-¢ 002/ 31-8 1l-8 \po01

000 n+l 100 n
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But
- GO x ® 3 ®)  (x ©) zn(a)>\\
e (x (8 2 () = | (v, (®) x (8 (5 (€ (7, ) 2z (E))
SR {
\(zn(E) x . ()) (2 (8) y (E)) (zrzl(‘é))
%,»“‘ Thus, after combining terms in Eq. (14}, we conclude that
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(x2(E)) = YA = 28"
*n Yn T 3(n+ D(n + 2)
WL - ™2 1w (n o+ 2)v] = v - D™ - 14 (n 4 D]
ww(w - v)
(15)
and
2
2.\ 2F
O R T Yo )
n+2 n+2

-1+ (n + 2)4] + 2v [(1 -

wv (w - V)

x{wz—wwu;—y —1+m+zw%

(16)
where
v=1-g=1 - (cos 6)
and
_ 3
w=1l-¢=% (- (cos 8)) .

CONDITIONAL ANGULAR MOMENTS {cos e)n and (c092 e)n

Let BH be the rotation matrix resulting from n scatterings, so
that

BH = B0 B1 s Bn .

Taking expectations and using Eq. (6), we obtain

0 0 0
§H=§“= 0 0 0 .
~{sin 6){cos G)n—l 0 {cos e)“
! H
e SRR A (o lee
Bty o iR e ST
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But by definition

0 0 0
B = 0 0 0 .
~{sin 6>n 0 {cos 6>n

Matching entries in the last two expressions for EH’ the expectation

of the polar angle cosine after n scatterings is given by
{cos G)n = {cos )" =g" = (1 - . 17)

S5imilarly,

\ 1l
2
1/2(sin e)n 0 0
= 0 142842 8) 0 ,
n
2
0 0 {cos 6>n

so, after matching terms with Eq. (13),
{cos? ON =@+ =3n+2a0-wl. (18)

UNCONDITIONAL MOMENTS

We calculate the unconditional moments from the conditional

moments after observing that the probability of a photon uadergoing
exactly 1. scatterings at time £ is Poisson~distributed with mean &,
as in Eq. (2). Hence from Eqs. (7) and (8), we obtain
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x® = Y Pa(®) = n} K¢

n=0

0, (19)

7® =) Pa® =} 5 -0, (20)
n=0

and

2® =) Pa® =} 3,®
n=0
E e-E En g 1 - (l - v)n+1
n! n+1 v
n=0

&
1

= (21)

Similarly, to calculate the unconditional spatial variance Ui(&), we
combine Eqs. (2), (15), and (19) to obtain
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o2(€) = (L®) - ¥ ¢
=D 2@ =} o)
n=0
B P
wd 1! 3n+ 1)(n + 2)
n=0 -
y {wz[(l =™ 14 e Dv] - A -0 o1k (s zm]}
wvz(w - v)
_ 28 2 A - we™?
3l - v L (n + D
> n+2 z n+l
‘Z TP *"g}: XL
n=0 n=0
) (1 - WE™ 2 = .
-V (n + 2)! -Z(n+2)!+wgz(n+l)! .
n=0 n=0 n=0
Since
z n+1
£ N
Z m+nr-e -1 ,
n=0 (
and
i n+2
£ _.&
E(nJrZ)!"e -1-g,
n=0
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combining terms yields
ije E:'-l-i-vE)—v (ew€-1+wE)
o2 <& = (22)
wv (w - v)

From Eq. (15), (YZ(E)) = (xz(E)); therefore,

2

(e—vﬁ -1+ v!;') - v (e e _ 1+ w‘g’) (23)

wv(w-v)

wlro

c (E)

Likewise, to compute 05(5) we use Eqs. (2) and (16) to obtain

@©) =D Pn(® = n} (A

n=0
B
a! 3(n+ 1+ 2)
n=0

y {(wz -3 -™ o1+ avi+ 2 A - W™t o1k e 2)w]}

wv (w -~ v)

=g(w?'-3wv)(ev£;—1+vt’§)+2v (ewg—l-i-wg)

3 wv (w -v)
Thus,
2© = 2®) - 24
_2 - 3w e - 1+ vE) + 2vPe ™ - 14 )
wvz(w - v)
2
1 - e—v€
- (———‘;——-) . (24)
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The calculation of the unconditional angular moments proceeds in
the same manner. Thus, Eqs. (12) and (17) yield

(cos 6(£)) =Z P{a(€) = n} {cos 0

n=0

=Z e_.i_!in (1 - V)n = e-g eg(l‘v)

n=0

’ (25)

and Eqs. (2) and (18) yield

(cos2 8()) =Z P{n(E) = n} (cosz G)n

n=0

o _g n
= .e___g_ l[l+2(l-w)n]

n! 3
n=0
(o] 0
_1 - n [ - wE]
"3°¢ :E:: ET’+ 2 :E:: n!
n=0 n=0

SR (ea + Zeea—w)>

(1 + 279

W=

. (26)
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I11. MOMENT ILLUSTRATIONS AND ASYMPTOTICS
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Here we examine the physical significance of the moment formulae

TERAPRY

as well as their behavior for small and large times to allow compar-
ison with published results and to demonstrate the traasition be-
tween the diffusion and forward scatter regimes. Our discussion is

predicated on the assumption of an arbitvarily thin, delta-function

time pulse immersed in an infinite nonabsorbing medium. Section IV
> extends our results to a finite cloud with absorption, and Sec. V
considers a broad Gaussian beam at the cloud entrance and an atmo-

spheric la,er below the cloud.

DIFFUSION REGIME

It is convenient to consider a simple diffusion (e.g., Brownian

motion) as the limiting process obtained when a particle suffers an
arbitrarily large number of isotropic scatterings separated by arbi-
trarily small path lengths. The moments of the particle distribution

are then consistent with a stationary centroid at x = 0, a spatial

variance along each coordinate that grows linearly with time, and an
isotropic heading independent of time. Although individual photon
deflections within a cloud are highly anisotropic, after a photon
undergoes many scatterings, its behavior may be expected to resemble
that of a diffusing particle. This intuitive notion is verified by

the moment formulae below.

<~
.

I p s v

Figures 2 and 4 illustrate the temporal behavior of the first two

oy

R spatial moments of the scattering process. Figure 3 plots E(E) com—-

s Gyt

puted from Eq. (21) for several values of {cos 8). The asymptotic

. limit of z(E) is
s &

o h - 1
AP éi: z(8) cos O

¢
33

(27)

The centroid of the photon density is thus stationary at about z = 7

TR St
L]

? for £ > 20 when {cos 6) = 0.85, a representative value for cloud
aerosols [l1]}. TFigure 4 plots Ox(E} and GZ(E) from Eqs. (22) and (24),
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respectively, for {cos 6) = (cos2 8) = 0.85. The asymptotic limit of
the corresponding variances is given by

2., _ 2. _2
() = 0.(6) = 3 Ty (28)

for large £. Equation (28) evaluated for {cos 6) = 0 (isotropic
scattering) is the classical diffusion result for Brownian motion [6].
Equations (27) and (28) also evince the 1 ~ {cos 6} factor suggested
for scaling diffusion results [4].

To conclude that the photon distribution for large times resembles
that of a diffusing particle, we must inspect the behavior of the angular
as well as the spatial moments. From Eqs. (25) and (26) in Sec. II,

{cos 8{E)) = e V& (29)

and

0% o(®) = (cos® 8(E)) - {cos B(E))?

cos

% 1+ 2e78) - 2VE (39)
where 8(£) is the polar direction of the photon at normalized time £.
Figure 5 plots {cos 6(£)) and O,os (&) for {cos 0) = (cos2 8)

= 0.85. The asymptotic limit of {cos 8(£)) is zero, corresponding to
a diffusion-like isotropic polar heading; and

2 1
éi: Ocos G(E) T30

=
=
bt
ES
r..
!g.
.

IR

¢
%
T,
SR

which is also a diffusion result.

it

Thus, the asymptotic limits of the
first two spatial and angular moments of the photon distribution are

those of a diffusion process in an infinite medium. Furthermore, the

diffusion limits are approximated after about £ = 15, suggesting a

diffusion (or thick cloud) regime for optical thicknesses greater than
T = 15.
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A
: FORWARD SCATTER REGIME o
Since photon scattering in clouds is highly peaked in the forward
direction, photons deflected only a few times maintain their initial
spatial, angular, and temporal cohesion. In cur normalized units, the
average number of scatterings at time § is £ itself for randomly dis-
trituted aerosols. For small &, therefore, we would expect the moment
formulae to evince the behavior attributed to the multiple forward
geatter (or thin cloud) regime.
Expressing oi(g) from Eq. (22) as a power series of §, we obtain ¢
(o]
2 _ 2w 2 : _zk, k=2 k-2, £~
ox(g) - 3(‘1 - V) ( 1) (V w ) k! ’
k=3 L
which prm\/ides the interesting small-time expression
2 w .3
ox(g) =3 £ . (31) C
The usual definition of mean square spread [3] results in
2 2 2 ¢
) = &7+ 69
2
= 20_(&)
: {
; o 2¥ g3 (32)
. 9
for small times. When written in the dimensioned variables R = k;]‘r
; and t = (ksc)_lg, with the small-angle assumptions (cosz 6) 21 - (92) p
) . and ct =« Z, Eq. (32) becomes
2y _ 1 3/a2
. RY) =3 W 27607 ,
. (
{ which is identical to the small-angle scattering result (cf. f3] and
O 7n.
i .
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= 2 3
g 5 However, the dependence of {r“) on £ in the approximate equation
g (32) is valid for only about § < 5, as shown in Fig. 6, where the rms
é beam spread J(rz) is plotted using oi(g) from both the exact equation
(22) and the approximate (small time) equation (31). We thus conclude
that, for calculating mean square spread, the small-angle assumption
is questionable for optical thicknesses greater than T = 5.
The moment formulae also allow for a simplified calculation of
E the average multipath pulse delay for thin clouds. Let Af =¥ - T be
i the random delay between the time an unscattered photon passes through
i the plane z = T (in normalized units, this time is T itself since the
5 normalized velocity is unity) and the random time & at which the possibly
i scattered photon passes through the plane z = T.
% It is reasonable to estimate the average value of £ as the time
% taken by the centroid of the photon density along the z-axis to pass
§ through the z = T plane. Thus, inverting Eq. (21) yields
ﬁ = 1 1
e § e ;;i/n (1 = V‘I') ’
%
%} S0
i _Ee;l;zn (-1—:]-“-;,[—)—1, (33)
s
; . ; an expression that should be applicable for small T.
5 . iz Figure 7 plots Eq. (33) and the thick-cloud simulation curve fit [4]
é ‘%u~ C for AE versus T. The expression given by Eq. (33) appears to diverge
f . from the simulation prediction (compared with a true cloud exit but for
% F relatively large T) at about T = 5, where backscatter starts to become
§ i : important. The divergence arises because Eq. (33) forlzg is derived
; & C from an infinite cloud model, so photons that would have left a finite
% 3 ] cloud tend to increase the time for the z-axis centroid to reach the
% ’v:x plane z = T. For small T, however, nearly all photons are heading in
% the forward (increasing z) direction, so the lack of a true cloud exit
i . '52 at T is inconsequential.
é g § An analysis based on a path-length integral along r aaz3/2~~the
E i § small-angle~derived, mean square, transverse spread--obtains the
R
3 ;
18
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Fig. 6--Effects of small-angle assumption on rms beam spread
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expression {8] (in our notation with the single-scatter albedo set

to unity)

3/2
v 0.30 9 2
AE = 1§ —5— [ 1+ 2 1(e%) - 1] . (34)
(0% ( 4 )

Expanding Eq. (34) in T, and ignoring third and higher order terms,

we obtain the small T expression

£ =0.57 rz(ez) . (35)

Similarly expanding Eq. (33) and setting v = 1 - {cos 6) = (62/2)
yields

B = 16D,

about a factor of two less than Eq. (35). This discrepancy is appar-

ently due to the path chosen to calculate AE in Eq. (34) (i.e.,

T~ 23/2) being too long for photons that have suffered, on average,

only T scatterings. However, Eq. (34) eventually (for T > 30) yields

an underestimate of KE compared with simulation results (cf. [9])
because the smooth path is shorter than the jagged diffusion-like
sample paths.

CONDITIONAL MOMENTS

Recall that intermediate results in the moment derivations of

Sec. II are expressions for the moments conditioned on exactly n
scatterings. The conditional moments provide paysical insights into
the scattering process that are not apparent froa inspection of the

unconditional moments. Hence, Fig. 8 plots En(g) from Eq. (8) and

o, B) = [GEENTT and o (m, B = (G2 - 22(®)1
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from Eqs, (15) and (16), respe tively. Although Fig. 8 is for § = 100,
observe that En(g), Ox(n, £), and oz(n, £) are all proportional to &--
so, when considered as functions of n for fixed £, their form is in~
variant with E.

The behavior of En(E) in Fig. 8 is intuitive: the higher the
scattering order n, the closer the centroid of the conditional dis-
tribution lies to the origin (indeed, %ig En(g) = 0). That is, on
average, the more a photon is scattered, the farther it lags behind
its unscattered brethren.

The plots of oz(n, £) and Gx(n, £) display maxima at about n = 10
and n = 15, respectively. The values of n at which these maxima occur
are sensitive to {cos 8) but invariant with £. Furthermore,

%ig oz(n, E) = %32 Gx(n, £) = 0. Thus, at any time £, photons
scattered many times tend to accumulate at the origin, their disper-
sion decreasing with order n. Such clustering occurs because, at a
given time, all photons have the same path length but the relatively
jagged (diffusion-like) paths of those that have been scattered many
times will have, on average, kept them closer to the orxrigin. That
effect would be mcst pronounced for isotropic scattering (i.e.,

(cos 8) = 0) since it 1s identical to diffusion in the limit of a

decreasing mean free path between scatterings.
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IV. DIFFUSION APPROXIMATION FOR MULTIPLE SCATTERING
IN_AN INFINITE CLOUD LAYER

The moments of the radiance distribution and the ultimately dif-

fusive behavior of scattered photons are now used to develop an expres—

sion for the irradiance at the exit of an infinite plane-parallel cloud.

The irradiance allows us to calculate the power collected over an in-

finite plane receiver at the cloud exit, then compare our results with

RN R

Monte Carlo simulations of the identical problem. The calculated and

L
W @,,

simulated power pulses strongly agree for T = 30 and are virtually

indistinguishable for 1 = 80.

DIFFUSION EQUATION

The three-dimensional diffusion equation for a particle with
homogeneous diffusion coefficient D(§) = (DX(E%, Dy(g), Dz(g))T’
drift coefficient a(§) = (ax(E), ay(E), az(E)) , and absorption co-
efficient k is [10]*

(x, £ [DE) (42 3 )
| = (L7) - 2® - g};)-n olx, £) (36)

0x =

PN
R

&

where p(x, &) is the probability volume demsity for the particle at
time £. The solution of Eq. (36) for a particle initially at the
origin (o(x, 0) = 6(x)) in an infinite homogeneous medium is given

by [10]

px, & = @22 e {-ie + 27 - W - wif, 6N

R ST DR T AR N RSO HNF VRN R A =
w»

B
[ J

153

23 * T

& \ . o _(9 38 9

% For simplicity, we define E = ('é;’ 8—y’ -5;) and
5 T

& . a2 32 32 32

G 5 = —.—’ ._——’ e .

§- ax’ \oxZ ay? 2z’

- )
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where
£
H=[ a(g') ag’
0
and

; ¢ ;
! =/ D, (E") ds'f D, (€") ds'f D(E") dE' .
0 0 0

Equation (37) is simply the product of three independent Gaussian
densities and an absorption term e-KE. Hence we may write

pex, B) = e o (x, D) 0,7, ) 9,2, B,

where px, py, and pz are one~dimensional Gaussian densities. Since
a Gaussian density is determined by its first two moments and the
moments of the transport process in an infinite medium were derived

in Sec. 1II, we conclude that

3%(E) 2o\t
a®) ~ —— = <o, 0, 3‘%?) (38)

and

2 2 2 T
B0-(E)  30L(8)  30L(E)
D(E) =~< = 1 = ) : (39)

O

where Z(E), °:2:(€) - o}z,(g), and 62(€) are given by Egs. (21), (22), and
(24), respectively.

Recall that Sec. TII shows that z(£), oi(E), and ci(g) asymptoti-
cally approach classical diffusion limits. Although the nonstationary
transport equation (1) has been approximated by the diffusion equation
(36) in prior treatments (cf. [11]) and [12)), the drift and diffusion

coefficients have been time-invariant--generally set equal to their

o T SR
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asymptotic values or otherwise approximated. Armed with the exact

B closed-form expressions derived in Sec. II, we will strive to extend
the region of validity for the diffusion approximation by employing the
"correct" time-varying coefficients. In the simplest sense, Egqs. (37)
through (39) together constitute the correct Green's function for the

¢ photon density of the infinite-medium transport problem because they
provide the correct spatial moments for all £ > 0. However, the dif-
fusion approximation used to obtain that solution forces the density
p(ﬁ, £) into a Gaussian form that is valid only after the onset of

* the diffusion regime (£ > 15).

BOUNDARY CONDITIONS

Consider a photon that traverses the boundary between a scattering

and a nonscattering medium. Since it can never return to the scattering
medium, its behavior inside the cloud may be likened to that of a dif-
fusing particle attaining an absorbing wall. Diffusion theory provides
the absorbing-wall boundary condition p(x, &) = 0 for all x along the

‘e wall [10]. However, close to boundaries, the diffusion approximation
to the transport process is known to be questionable.

By direct solution of Milne's equation for a simpler, related

problem, Morse and Feshbach [11] have shown that the appropriate con-

£

dition for a diffusing particle used to approximate photon transport

across an exit boundary is given by

'

"

R A S B P S RN O OATILAF Po ant3 e Wk« 4 ¥ v

Lt

< B
PLAN

apz
pz(z) =~ (.71 3T s (40)
z=0 or z=T

]

s 2t

where, as shown in Fig. 1, we have modeled our cloud as a slab of

ppeend

infinite horizontal extent and (optical) thickness T = kSZO—--ZO being

“

the physical thickness of the cloud. Since Milne's problem considers

e

»

a stationary plane wave incident on the scattering medium, Eq. (40)
is the steady-state boundary condition for a three-dimensional problem

that reduces to one dimension by symmetry. Furthermore, Eq. (40) holds

R AN

for only isotropic scattering, suggesting that the usual v = 1 - {cos 6)

H

v LT
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scaling for anisotropic scattering [11-13] should be applied to obtain

the boundarv condition

’ (41)

which we use below.

The difficulty in applving Eq. (41) lies in specification of both
the density and its gradient at the boundary. Adopting the technique
of Morse and Feshbach {11,12], we extend the scattering medium a dis-
tance 0.71/v beyond each boundary and set pz(z, £) £ 0 at the boundary
of the extended medium, as represented in Fig. %. Using the extended
medium with the diffusion approximation for Milne's steady-state prob-
lem results in an error of no more than a 0.3 percent for pz in the
scattering medium, compared with the exact solution {11’ .

We now solve Eq. (3€) with the coefficients from E¢s. (38) and
(39), initial condition

p(x, &) = 8(x) §(y) 6(2) , £=0 (42)

and boundary conditions

71
p(x, ) 20, z = 0.71 a 0.71

!
|
=]
(=%
N
[}
-
+
|
~
B~
W
~

and

p(;‘_{_’ &) =

i

o
=
n
<
n
+
8

(44)

The separability of the initial and boundavy conditions for Eq. (36)

implies that the solution is of the form
ox ) = e ™€ 0, B 2.6, D) 0,2, D) (45)

where px, py, and pz are the solutions to three one-dimensional dif-

fusion equations with the corresponding one-dimensional boundary
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conditions and without an absorption term [14]. Thus, px and py remain

Gaussian with mean zero and variance oi(g) = 0;(5) given by Eq. (22),

since our finite-thickness cloud is still of infinite horizontal extent.

Hence
x2
p_ (x, &) =~ exp | - - (46)
x o Vo 202 (£)
x X
and
1 9
py(y, £) = exp | - —% . (47)
o V2w 207 ()
y y
For pz(z, £), we seek the solution of
%, D (&) o, 2
T -T2 52 %0 % (48)
z
subject to
Dz(z, g) = 8(2) , £=0
and
) pz(z,E)EO, z—‘=-9—"~rzl and z='l'+9;v7—l-.
e The method of images obtains the solution [14]

oo

e 1 - 1.42
p_(z, £) = ————— ) exp{—-|z - z2(§) + 2k (T + ———*)]}
. 2 o, (&) /z—nl;w { [ v

-exp{-[z+§(€)+2k(r+%)+l“—@]} , (49)

v
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which is a rapidly converging series for all z and £ of interest.
Thus, the solution of Eq. (36) with coefficlents given by Eqs. (38)
and (39), initial condition by Eq. (42), and boundary conditions by
Eqs. (43) and (44) is

PG, B) = ™€ 0 (x, ©) £, 7, ©) 0,02 )

where px, py, and pz are given by Eqs. (46), (47), and (49), respec-
tively. The absorption coefficient k, normalized to the mean free

scatterinyg length k;l, is

WIF‘
o

1 -2
- A ’ (50)

2]

where ka is the unnormalized absorption coefficient and A is the single-

scatter albedo.

IRRADIANCE AT CLOUD EXIT

Consider che probability that an unabsorbed photon initially at
x = 0 has left the scattering medium by time £.

This probability is
given in the diffusion approximation by th cumulative probability that

a diffusing particle remains unabsorbed in che medium until time &:

o] [] T
Plz(g) €(0, 11} = 1 - / [ e oGz, B) av_
X==00 y=_oo z=0 -
o© ) T
=1- / Py (xs &) P (ys £) p,(2, E) dx dy dz
== 00 y=- z=0
T
=l—f p,(z, &) dz .
0
[ — - i alnaside et e
« ;}‘ﬁg :\ -

e -
SRR e e e
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We can thus use Eq. (48) to obtain the exit time (or "first passage')

density
9 P —_—— Tapz
EE{ADEN,H}=1-/.E?dz
0
* o, 3%, 3,
=:/ 2 52 B % |4
0
D_(&) 9p D_(&) 9p
z z 2
= [az(g) P, =72 EEE] _ - [az(E) P, - "??"EE?] o
z=T z=0

The first term in the last expression is the first~passage probability

density for photons leaving the cloud (bottom) at z = T. That density

is recognizable as the usual diffusion flux

DZ
7 V2P

zZ 2

augmented by a drift term a, p, = e—vE o, [from Eqs. (21) and (38)],
which quickly expires for optically thick clouds. Denoting the first-

passage density at the cloud bottom by A(T, &), we have

_ D,(E) 3
=T
) 82 [ e 0,®
) DI I | R

0, (&) VIm e 262 (£) 20, ()
2
B D, (&)

e |- ||+ Z—8, | ¢ (51)

20 (5) 20, ()

4
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where

w0
i

- 0.71
1 -z(&) + t(1 + 2k) + 4k (—;—) s

B,

]

z(E) + (1 + 2k) (T +l_vi%) R

and, from Eq. (24),

20%(8)
D (§) = ~HE

-vE -wg
_2 -3 -e V) +ov@ - e ") ~vE _-w]
=3 [ 3w = V) -e Q1-e A} .

Thus, for a narrow, ccllimated, delta-pulse source with energy Eo,

we obtain from Eq. (51) the irradiance on the exit plane z = T as

e, T ) = By e o (x, ) AT, B) (52)

where the radial distance r = (x2 + yz)%. Since x and y are Gaussian

random variables, r is Rayleigh-distributed, so

2
p_(r, &) = —— exp = . (53)
i 2@ | 202

COMPARISON WITH MONTE CARLO SIMULATIONS
Now we digress to test the validity of Eq. (52). Consider the

power into an infinite-plane, w/2-field-of-view receiver. For E,6 =1

;
T o A
2 ?ﬁﬁﬁ%@&@?i“ e Sew

0
and K = 0, the received power pulse is simply A(t, &) since, from
Eq. (52),

o0 [oo]
J(r, T; &) dr = A(T, &) / p (r, &) dr = A(T, &) .
r=0 0

K Pl
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Bucher {4] considers this problem in his Monte Carlo simulations.
Figures 10 and 11 plot the simulated and calculated pulses for T = 30
and 80, respectively. Although the pulse amplitudes have been normal-
ized to unity in these figures, the integral of the puises, or received

energy,

o]

ET=[ A, &) dE

0

also agrees well with Bucher's Monte Carlo curve fit, as shown in
Fig. 12.
Bucher also plots (r)T, the mean radial distance of exiting

photons for a cloud of optical thickness T. We calculate

(]

(::)T =/ r hT(r) dr , (54)
]

where hT(r) dr is the conditional probability of a photon exiting
through an annulus dr at r given that it attains z = T. Defining B
as the event corresponding to the photon leaving at all, and using

conditional probabilities, we have

hT(r) dr = P{r €dr/B} = P{r €dr, B}/P(8}

=/ P(r €dr, £€dE, BY/P{B}
£=0

- / Plr car, B/EVPLE € aE, BY/P(B) . (55)
£=0

.
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" & Fig. 10--Comparison of simulated and calculated power pulses for T = 30
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1.0
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cloud exit a=00

Ofov = /2
{cos ) = 0.827
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0 1000 2000
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Fig. 11--Comparison of simulated and calculated
power pulses for t = 80
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But, from Eq. (53), the radial density of photons at time & is
4
X r2
Plrear, B/E} = —— exp | - —
o (E) 202(8)
and S
(&}
P{r} =f AT, £) &€ = E_ .
0
After substitution, Eq. (55) becomes
[e2]
-1 Y r2 :
h (x) dr = E_ f 2‘ exp | - —5 A(t, &) dE *
o Tx(® 207(E)
and Eq. (54) is then
[+ o«
-1 r2 r2
(r)T = E_ / / 5 " eXp | =~ — A(t, &) dE .
=0 Jg=0 O (®) 20,,(5)
Reversing the order of integration and recognizing the Maxwellian
C density results in
= [ w i
1 r2 r2
(e)_=E_ Vu/2 exp | - dr) o (&) A(t, &) d§
T 02 () 202(5) x
&E=0 r=0 "x X
%ﬁf
y w 4
b ..1 A
L = £ /A2 f o (E) A(T, £) dE , (36)
H §=0

which is numerically integrated and plotted with the Bucher curve fit
in Fig. 13.
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A key factor in optical communications, pulse stretching is dra-

i matically affected by multipath delays due to multiple scattering in

clouds, as shown in Figs. 10 and 11. To churacterize multipath delay

we again adopt the mean delay ZE ='E - T (discussed in Sec. III, p. 29).

In the diffusion approximation for an infinite plane receiver at z = T,

o

5 ~

., [ oo

B = 220 -t (57)

» [ s

= £=0

%’ Figure 14 plots ZE against T using Eq. (57) aud tha Bucher simulation

% curve. The calculated pulse broadens as the diffusion zpproximation

% breaks down below T =~ 15.

? Together, Figs. 10 through 14 illustrate the remarkable corre-

; spondence between the calculated and the simulated results. The power

z' of an analytic solution of the nonstationary transport problem does ‘
i not, however, lie in duplicating highly aggregated simulation results.

? Rather, once validated, the analvtic model provides solution: to prob-

? lems that would require excessive computer time to simulate Vecause

% of sparse histogram data. For example, if the infinite-planc, m/2-

g field-of-view receiver is replaced by a finite receiver to study field-

i of-view effects, then an analytic treatment may provide the ¢anly prac-

= tical way to obtain results. We consider the problem of finite receivers

; below. )
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V. PROPAGATION BELOW CLOUD AND FINITE RECEIVER CALCULATIONS

Recall that Ja(r, T: £) in Eq. (52) 1s the diffusion-derived
irradiance on the cloud exit plane (z = T) for an initial, narrow,
collimated delta pulse at x = 0 on the cloud entrance plane. The

radiant source for the transport equation (1) in that case is

EO 8(x) 6(a) 6(&)
sin 6 ’

SO(}_f_s a; &) =

where o = (8, ¢) denotes the ordered pair of polar and rotation angles,
respectively. The generalization to a broad Gaussian beam at the

cloud entrance with spatial variance 02

B is straightforward. Hence,

for the transport source

E, 8(z) §(a) 8(E) [ .2, .2

+
54(xs a5 £) = 20— exp -L’—‘——iLl , (58)
ZnoB sin 6 ZoB

1
or for the corresponding initial energy density in r = (x2 + y"z)'5

and 2z
rZ
p(r) Z, E) = E T 0 6(2) 6(5) exp | - "—'i' ’ (59)
20
B
the exit plane irradiance becomes
[<-]
U 12
J(r, T; &) = E, f Jg(r = U, T;5 &) 5 exp --L—z du
0 GB ZOB
- -Kg
=B, e p(r, £) AT, E) , (60)
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where
r rz
pr(r’ &) = '—i——'——-f exp { ~ 2 2 ) (61)
oL (E) + oy 2[ox(g) 4 oB]

and A(t, &) is given by Eq. (51). The broad-beam irradiance equation

(60) is used below to develop an expression for the full radiance dis-
tribution at the cloud exit.

RADIANCE AND RECEIVED POWER AT CLOUD EXTIT

The angular distribution of particles emitted from the exit sur-~
face of a plane-parallel scattering medium with a stationary plane-wave

input (Milne's problem) is closely approximated by the normali:- 1
expression

2+ 3 cos O

0<6=<7/2,0<¢< 2T, (62)

which is derived by Morse and Feshbach [ll] using a steady-state dif-

fusion approximation. Simulations for delta-pulse inputs have shown

that the light emerging from an optically thick medium is consistent
with Eq. (62) and nearly independent of r, T, and & [4,15]. Thus, we
adopt Eq. (62) for the angular distribution of photons leaving the
bottom of the cloud, with the source function given by Eq. (58).

The separability of the spatial and angular dependence for light
emerging from the cloud bottom implies a radiance of the form

I(r, T, a; &) ~ J(xr, T; E) g(a). But, by definition,

J(x, T; &) =/I(r, T, 0: £) cos 6 dwa , (63)

2

where dwa = gin 0 dO d¢ is the solid-angle element in the direction
o = (0, ¢), and the integral is over Q = 4T steradians. With the
initial condition given by Eq. (58), therefore, the radiance at the

cloud exit from Eqs. (60), (62), and (63) is
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Ir, T, a3 £) = —Kf T (@)
_/g(u) cos 6 du
Q

Eo -«
=7m e (2+3cos® p.r, &)

x A(t, &) , 0<08=<Tm/2, (64)
: where pr(r, £) and A(t, &) are given by Eqs. (61) and (51), respectively.
; The power into an on-axis receiver at the cloud exit, with normal-
3 ized aperture radius a and field-of-view half-angle O fov’ is

P()

a efov 2T
0=0

/ / I cos O sin 0 d6 d¢
r=0 ¢=0

= f:l'?' e-Kg(B - cos zefov -2 cos3 efov)
" 2
< x[1 - exp {- —= 57¢ | ACt, ©) . (65)
2 [ox(g) + O'B]
For a = o, efov = 7/2, EO =1, and Kk = 0, Eq. (65) reduces to
. PT(E) = A(T, £), consistent with the infinite-plane-receiver analysis
I in Sec. IV, p. 43.
PROPAGATION BELOW CLOUD
, - Consider the narrow delta pulse of light emerging from the cloud
e y l bottom (z = T) at position r' = (x', y')T, time £', and direction
j & a' = (8", ¢'). At time £ = E' + d sec O, the pulse will illuminate
‘ the plane z = T + d at the position r = r' + d tan 0 o while main-
Lot taining the direction a = o', where n = (cos ¢', sin cb')T. Hence
the atmospheric propagator from the plane z = T to the plane z = T + d
: is
.
£ b
a "
55
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G(E: T+d, o, & E" T, a', &)
’ t
= eMd sec 8 st L' _d tan e n) 8 - a') 8(E - E' - d sec 0) .
A In cartesian coordinates, the radiance emerging from the plane z = T + d
'] is given by
]
,.1 -]
I(xr, T+d, a; &) =f dE'/ dzg'/dwa., I(x', 1, a'; E') G
% 0 RZ Q
=e_deeceI(£-—dtan9_rlL, T, a; £ - d sec 8) ,
- which, with the help of Eqs. (61) and (64), becomes
E
. = _0 K&
I(_g_,'r+d,<x,£)—4—e (2 + 3 cos 8) p_(x, &)
T r =
{.
XA(T, E ~dsecB) , 0<86<mu/2, (66)
3 where
's éf:
1
§ p.(x, &) = 3 7
| é z Zn[ox(g - d sec B) + oB]
E | 2 2
] T'%Qg Xexps— (x—dtan@;os(b) +(y—dtgnesin¢)
- l z[ox(g - d sec 6) + oB]
= L (67)
g The value of the radiance at z = T+ d and r = 0 is of interest below.
' é §3 Hence, from Eq. (66),
4 S 1 Ey e_Kg(Z + 3 cos 8) A(t, £ - d sec 0)
: % I(r, T +d, a; &) = 5F 3 5
r=0 81T[0(£—dsec6)+0]
s be - * B
h E 2, 2
53
i?_ % X exp | - > d tan” 6 : . (68)
ok Z[OX(E - d sec 6) + OB]
- e
W . ~ . e
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For calculating the power into an on-~axis receiver at z = T + d
with aperture a and field-of-view efov’ we assume that the radiance

over the aperture is approximately equal to its value at r = 0 when
a <« [ci(g) + cé]%

for all § > t. Thus, from Eq. (68), the received power is given by

efov 2
3 P (E) = dzr de d¢ 1 cos B cin 6
o T+d - =0
o |z|<a 6=0 $=0 L
: E a2 efov
-0 e-—KEf A(t, £ - d sec 6)
4 2 2
6=0 OX(E - d sec 8) + OB
2 2
X exp { - 5 d_tan © 3 (2 + 3 cos 8) cos 6 sin 6 d6 ,
ZEJX(E - d sec 9) + GB] .

(69)

o b

which may be evaluated numerically. However, if efov is also small,

Eq. (69) reduces to

% SazE0 -kE

- P, (E) = e 5 (T, £ - @)

2 3 T+d 2

_ :_\\ 4d

% ; w" d2 eéov

I - x|1-exp (- 5 5 . (70)
: 2[ox(g - d) + oB]

2 ?, As a check for Eq. (70), we obtain

A 2. .2

3 L 5a"E, O _

= L lin B, (E) = ——5——s ™ agr, B,

0 8[0 (€) +0 ]

g X B

= é which is identical to PT given by Eq. (65) evaluated with the usual
; X approximations when a and efov are assumed to be small.
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To show the effect of replacing Eq. (69), which requires a numer-
ical integration, with the closed-form equation (70), Fig. 15 plots

[+

Eyq(a 8 ) =/ PLa(® dE
£=0

against efov using PT+d(€) from both Eqs. (69) and (70). The approxi-
mate equation (70) results in under a 5 percent error ;n ET+d(a, efov)
for efov < 15 deg when EO =1J, k=0, {cos 0) = {cos“ 8) = 0.850,
T =30, d = 150, OB = 500, and a = 0.01. Therefore, we recommend the
use of the computationally efficient Eq. (70) whenever efov < 15 deg.
Furthermore, Fig. 15 indicates that beyond about efov = 20 deg, the
signal energy into the receiver does not increase appreciably.

Figures 16 through 21 show the effect of the cloud and atmospheric
layers on energy and pulse stretching for a finite receiver located

on-axis a distance d below the cloud. 1In each case, the received energy

is given by

<]

Frpg(@ B, = / Pq(E) dE
£=0

where PT+d(€) is computed from Eq. (69) if efov > 15 deg or from Eq.
(70) if efov < 15 deg. Pulse stretching is again represented by the

average multipath delay

B =k, (a, 8, ) f EP_y(B) dE - (T+d) .
£=0

We do not parameterize any calculations on receiver aperture
because of the simple dependence of PT+d(E) on aperture a, as evinced
in Egs. (69) and (70). The following input values are used in the

¢ computations for Figs. 16 through 21: E,=1J, k =0, {cos 8) =
(cos2 8) = 0.850, and OB = 25. The thickness of the atmospheric layer
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is expressed in kilometers under the assumption of a mean free scatter-
ing length k;l= 20 m; in this case, the standard deviation of the
incident beam is 500 m.

Figures 16 and 17 show the interaction of atmospheric layer thick-
ness and field of view. For thinner layers, wider fields of view in-~
crease both received energy and pulse stretching, but the latter effect
is relatively slight. For thicker atmospheric layers (D > 3 km), in-
creasing field of view beyond 20 or 30 deg does not influence received
energy or pulse stretching--because, if the spot subtended by the re-
ceiver on the cloud bottom is larger than the main body of the exiting
beam, then increasing field of view has little efiect on the received
pulse. Figures 18 through 21 display the relative importance of cloud
as opposed to atmospheric layer thickness when the receiver field of
view is fixed at 15 deg. With regard to received energy and especially
nultipath pulse stretching, the most important factor is the optical

thickness of the cloud, not its distance above the receiver.
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Fig. 15--Received energy versus field of view using a generally
applicable expression and one restricted to small-
field-of-view receivers
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Fig. 20--Received energy versus optical thickness of cloud for
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VI. IMPLICATIONS FOR BLUE~GREEN PROGRAM

It is difficult to assess the feasibility of satellite-to--ubmarine
optical communications without a well-founded, tractable, analytic treat-
ment for multiple scattering in clouds. Simulation results have been
computationally expensive, highly aggregated (e.g., based on infinite

receiving planes), and often presented without error bounds. Though

for finite receivers, analyses involving the small-angle assumption are
fundamentally problematical, especially when applied to all but the
thinnest clouds.

The mathematical treatment of multiple scattering presented here
begins by deriving the scattering moments--predicated on basic physical
concepts and performed without approximations—--and continues by develop-
ing the diffusion model, which was validated by published simulation
results for the identical problems. The credibility of both the ana-
lytic model and the simulation is established by their remarkable agree-
ment for optical thicknesses greater than 15-~the range for which clouds
most severely degrade the propagation path. However, the diffusion
model provides expressions that are both computationally efficient and
cover a broad range of problems at all levels of aggregation. The
moment formulae and the diffusion expressions also provide the physical
insight into the scattering process that may be required to resolve new
problems and existing anomalies in certain experimental results, as
discussed below.

Since the diffusion model provides an expression for the full

radiance distribution on a plane just above the ocean surface, it can

be linked with other models for radiance propagation through the ocean
surface down to a submarine-mounted receiver. With the addition of
noise, the fuli propagation path would be mcdeled, allowing efficient
optimization of receiver aperture and field of view. In any case, we
are now prepared to comment on relevant parts of the current model of

optical pulse propagation from satellite to submarine.
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NAVY MODEL

The Navy's blue-green single-pulse downliak propagation model {9]
provides a common base for analyzing satellite-to-submarine communica-
tion system performance. The Navy model is modularized to permit

convenient incorporation of new results for each part of the propaga-

L TR ALY

7

tion path (e.g., clouds, atmosphere, air/water interface). The de-

B3

velopments presented here are relevant to pulse shape and width, total

S YR

transmission through clouds and the cloud-to-~ocean atmospheric layer,

s

and the angular distribution of exiting radiation below the cloud.

ST Y A

In the following discussion, we either confirm the expressions used in
o the Navy model or suggest alternatives.
The Navy model represents energy transmission through the cloud

layer by the Bucher simulation fit [4], which is given by

1.9
B =+ 1.42 (71)

in our notation. TFigure 12 plots Eq. (71) togethsr with the diffusion
model result. The close agreement between the two curves demonstrates
that Eq. (71) is essentially correct and not subject to the factor-of-

two error in the 1.69 and 1.42 constants suggested in Ref. 9. The

e -

extrapolation of Eq. (71) to ET =1 for T = 0, as done in the Navy

, C model, seems appropriate; moreover, we agree with the zenith-angle
dependence on signal transmission taken from Bucher.

}\? The Navy model mechanism for cloud-to-water energy transmission
. appears to be inconsistent with the definition of energy transmission

6 through the cloud embodied in Eq. (71). 1Indeed, energy transmission

. through the cloud can be defined as the probability that a photon

entering the cloud from the top will eventually emerge from the bottom.
Applied to energy transmission thirough the cloud-to-water atmospheric
layer, this definition leads to the conclusion that transmission loss
is due only to the angular distribution of exiting photons and the
atmospheric absorption coefficient. Therefore, the diffusion model

calculates the transmission loss as

-
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[4 + xd(4 - 3kd) Ei(-kd)

+3e7%(1 - ka)) (712)

where the angular distribution g(®) is given by Eq. (62) and Ei(x) is
Equation (S-6a) in Ref. 9

does not account for atmospheric absorption, is apparently based on

the exponential integral function [16].

a spot spreading phenomenon, assumes a Lambertian distribution of
emerging light, and is substantially different from Eq. (72).

in Ref. 9 con-
forms well with those computed by Bucher [4] and hence with those com-

The received pulse shape given by F(t) = t e~kt

puted here. For multipath time spreading due to clouds, we suggest

use of the Bucher simulation fit

Zg - 0.62

which agrees with our results for all T (Figs. 7 and 14). Equation (34),

vhich is used in Ref. 9, is not recommended because it may not conform

to physical prerequisites, as discussed in Sec. III.

Figures 19 and
21 show that pulse stretching due to the cloud-to-water atmospheric
path is negligible compared with that due to clouds. Hence we agree

with Eq. (S-25b), which sets cloud-to-water pulse stretching to zero.

EXPERIMENTAL VERIFICATION

Because the dif.'usion model provides expressions for the power
(69)

and (70)] located an arbitrarv distance below a given cloud layer, the

received by a finite aperture and field-of-view receiver [Egs.

model is suitable for verification by comparison with experimental
results. Indeed, an experiment is currently under way om the island
of Kauai partly for this purpose. However, experimental verification
is fraught with complications, such as (1) the difficulty of measuring
experimental input parameters (e.g., T, {cos 6), ka) accurately encugh
to conclude that the model is correct, and (2) the inconsistency of

the geometric boundaries governing the experiment with the assumptions
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used to develop the model (e.g., a plane-parallel cloud layer). Ob-
taining accurate measurements of physical parameters is beyond the
scope of this report, but the effect of boundary prcblems is discussed
below.

One importaut, recent multiple scattering experiment was the Naval
Ocean Systems Center (NOSC) work on fog propagation reported in Ref. 1.
Tne effect of the ground as an absorbing boundary for photons has been
of some concern in interpreting the results of the NOSC experiment.

By using the boundary value techniques discussed in Sec. IV, the dif-

fusion model can be extended to account for an absorbing plane parallel

to and laterally displaced from the axis of propagation. Similar ex-—
tensions can be developed to model rectangular clouds, or rectangulir
slots or holes in clouds.

A scaled-down multiple scattering laboratory experiment has been
suggested, using large tanks filled with water and suspended oil
droplets. The dimensions of the tank and the absorptive properties
of the walls required to model a cloud without horizontal boundaries
are two of the technical issues that should be resolved before such

an experiment is undertaken. Our results indicate that tank boundaries

(perpendicular to the coordinate frame of photon motion) can be modeled

B

in the diffusion theory sense, as either absorbing, reflecting, or

T PR

elastic, so long as photons enter the tank at least 15 optical thick-
nesses from the side walls. Thus, the tank dimensions and side-wall
absorptive properties may not inhibit the laboratory verification of
the diffusion model.
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